POWERS OF 10

PROBLEMS (2)

To see the answer, pass your mouse over the colored area.
To cover the answer again, click "Refresh" ("Reload").
Do the problem yourself first!

8.  The unit at each place.  In this number

705,811,426,319

8.  there are how many

8.  a)  ones?  9         b)  ten thousands?  2

8.  c)  hundred millions?  8

8.   d)  ten billions?  0      e)  hundreds?  3

9.  In each of the following, what is the place value of 0?

9   a)  123,045   Hundred.         b)  102,345     Ten thousand.

11   c)  123,045,678,912   Hundred million.

9.   d)  120,345,678,912   One billion.

10.  Expanded form.  Write each of the following in expanded form.

10.  a)  24 =   2 Tens + 4 Ones, or, 20 + 4.

10.  b)  346 =   3 Hundreds + 4 Tens + 6 Ones, or, 300 + 40+ 6.

10.  c)  5,007 =   5 Thousands + 0 Hundreds + 0 Tens + 7 Ones.

10.  d)  21,053 = 2 Ten thousands + 1 Thousand + 0 Hundreds +

5 Tens + 3 Ones.

11.  Units of adjacent place value.  What is the relationship between
11.  units of adjacent place value?

1 unit of higher value is equal to -- or may be decomposed into -- 10 units of the next lower value.

12.  a)  1 ten = 10 ones.

12.  b)  1 hundred = 10 tens.

12.  c)  1 thousand = 10 hundreds.

13.  Answer with either the next higher or the next lower power of 10.

13.  a)   10 ones can be composed into 1 ten.

13.  b)  10 tens can be composed into 1 hundred.

13.  c)  10 hundreds can be composed into  1 thousand.

13.  d)  1 ten can be decomposed into 10 ones.

13.  e)  1 hundred can be decomposed into 10 tens.

13.  f)  1 thousand can be decomposed into 10 hundreds.

13.  g)  10 hundred-thousands can be composed into 1 million.

14.   Rounding.  Round  81,536

14.  a)  to the nearest ten.  81,540

14.  b)  to the nearest hundred.  81,500

14.  c)  to the nearest thousand.  82,000

15.   a)  Round  89,436  to the nearest thousand.  89,000

15.   b)  Round  89,536  to the nearest thousand.  90,000


Continue on to the next section.

or

Return to the previous section.

Table of Contents


Please make a donation to keep TheMathPage online.
Even $1 will help.


Copyright ©2014 Lawrence Spector

Questions or comments?

E-mail:  themathpage@nyc.rr.com