Lesson 26 Section 2 How to divide fractionsSection 1: How to multiply fractions WE ARE ABOUT to present an alternative to the method of "Invert and multiply." (But see below.) It is based on a techniqe the student already knows, namely finding a common denominator. For, in division, the dividend and divisor must be units of the same kind. They must have the same name. We can only divide dollars by dollars, hours by hours, yards by yards. 15 yards ÷ 3 yards = 5  because 5 times 3 yards = 15 yards. (Lesson 11.) (We cannot divide 15 yards by 3 feet  not until we change yards to feet.) With fractions, the units are named by the denominator. (Lesson 21.) Therefore:
"6 sevenths ÷ 2 sevenths = 3"  because 3 times 2 sevenths = 6 sevenths. 3 is how many times 2 sevenths are contained in 6 sevenths  which is the answer to the question that division asks. Here is the rule: To divide fractions, the denominators must be the same.
And on canceling the 15's 
 it does. (Section 1, Example 9.) Therefore when the denominators are the same, the quotient will be the quotient of the numerators.
Different denominators When the denominators are not the same 
 we can make a common denominator in the same way that we add fractions:
The common denominator here is 8 × 3 = 24.
As in multiplication, we must change mixed numbers to improper fractions. The common denominator is this example is 4.
To change a whole number into a fraction, multiply the whole number by the denominator.
That product will be the numerator. (Lesson 21.) Example 8. A bottle of medicine contains 15 oz. Each dose of the medicine is 2½ oz. How many doses are there in the bottle? Solution. This is a division problem (Lesson 11)  how many times can we subtract 2½ oz from 15 oz?
In that bottle there are 6 doses.
miles does 2 inches represent?
inch, then, are there in 2 inches? That number times 60 will produce the answer.
Or:
For a solution based on proportions, see Lesson 23, Example 5. "Invert and multiply" A method often taught is: "Invert the divisor and multiply."
As with many written methods, this is a trick that gives the right answer. It is based on the principle of equal denominators. Because
 we get the numerators if we changed those fractions to a common denominator. Invert and multiply is merely a rule, and therefore it is not very educational. Nevertheless, for certain problems it can be skillful, especially when the dividend is a whole number.
Invert the divisor  the number after the division sign ÷ . Divide 4 into 40, then multiply. When we invert a fraction, the number we obtain is called its
Reciprocals come in pairs.
See Lesson 29, Examples 6  8. The method of common denominators, however, is to be preferred. It uses a skill the student has already learned. And what is more, it emphasizes a basic property of division, namely: The units  the names of what we are dividing  must be the same. In algebra, which in any event is just rules, it is skillful to divide by multiplying by the reciprocal. Skill in arithmetic, however, requires understanding. In summary: 



Please "turn" the page and do some Problems. or Continue on to the next Lesson. Introduction  Home  Table of Contents Please make a donation to keep TheMathPage online. Copyright © 2014 Lawrence Spector Questions or comments? Email: themathpage@nyc.rr.com 