skill

S k i l l
 i n
A L G E B R A

Table of Contents | Home

30

COMPLEX
OR IMAGINARY
NUMBERS

The basic property of i

WE ARE ABOUT TO SEE that a complex, or imaginary, number is one whose square is negative. Compare Lesson 13.

Let us begin by recalling that in the lesson on radicals, we saw how to solve any equation in this form:

  x2  =  a.
 
  The solution is
  x  =  ±complex numbers.
 
  If we apply that rule to this equation --
 
x2  =  −1
 
  -- then
  x  =  ±complex numbers.

But complex numbers is not a real number.  There is no positive or negative number whose square is negative.  It turns out to be extremely useful in mathematics and science, however, to say that this equation,

x2 + 1 = 0,

has a solution.

complex numbers is called a complex number or an imaginary number. It is the complex unit.  Its symbol is i.

 i  =  complex numbers.

The complex number i is purely algebraic. That is, we call it a "number" because it will obey all the rules we normally associate with a number. We may add it, subtract it, multiply it, and so on.

The following rule defines the complex unit i, and is its fundamental algebraic property:

i2  =  −1

Example 1.   3i· 4i = 12i2 = 12(−1) = −12.

Example 2.   −5i· 6i = −30i2 = 30.

We can see, then, that the factor i2 changes the sign of a product.

Problem 1.   Evaluate the following.

To see the answer, pass your mouse over the colored area.
To cover the answer again, click "Refresh" ("Reload").
Do the problem yourself first!

   a)   i2  =  −1   b)   i· 2i  =  2i2 = 2(−1) = −2
 
  c)   (3i)2  =  32i2 = −9   d)   −5i· 4i  = −20i2 = 20

Negative radicand

If a radicand is negative --

complex numbers,  where a > 0,

-- then we can simplify it as follows:

complex numbers  =  complex numbers  =  complex numberscomplex numbers  =  icomplex numbers.

   Examples 3. complex numbers  =  icomplex numbers
 
  complex numbers  =  icomplex numbers  =  2i
 
  complex numbers  =  icomplex numbers  =  2icomplex numbers

Problem 2.   Express each of the following in terms of i.

   a)   complex numbers  =  i   b)   complex numbers  =  3i   c)   complex numbers  =  7i
 
   d)   complex numbers  =  icomplex numbers   e)   complex numbers  =  icomplex numbers   f)   complex numbers  =  2icomplex numbers
 
   g)   complex numbers  =  3icomplex numbers   h)   complex numbers  =  5icomplex numbers   i)   complex numbers  =  7icomplex numbers

Powers of i

Let us begin with i0, which is 1.  (Any number with exponent 0 is 1.)  Each power of i can be obtained from the previous power by multiplying it by i.  We have:

i0 = 1
 
i1 = i
 
i2 = −1
 
i3 = −1· i  =  −i
 
i4 = i· i  =  −i2  =  −(−1)  =  1

And we are back at 1 -- the cycle of powers will repeat.  Any power of i will be either

1,  i,  −1, or −i

-- according to the remainder upon dividing the exponent n by 4.

complex numbers

Examples 4 .   

  i9  =  i,   because on dividing 9 by 4, the remainder is 1.   i9  =  i1.
 
  i18  =  −1,   because on dividing 18 by 4, the remainder is 2.   i18  =  i2.
 
  i35  =  i,   because on dividing 35 by 4, the remainder is 3.   i35  =  i3.
 
  i40  =  1,   because on dividing 40 by 4, the remainder is 0.   i40  =  i0.

Note:  Even powers of i will be either 1 or −1, according as the exponent is a multiple of 4, or 2 more than a multiple of 4.  While odd powers will be either i or −i.

Problem 3.   Evaluate each power of i.

   a)   i3  = i   b)   i4 =  1   c)   i6 =  i2 = −1
 
  d)   i9 =  i1 =  i   e)   i12  =  i0  =  1   f)   i17 =  i1  =  i
 
  g)   i27 =  i3  =  i   h)   i30 = i2  =  −1   i)   i100 =  i0  =  1

Algebra with complex numbers

Complex numbers follow the same rules as real numbers.  For example, to multiply

(2 + 3i)(2 − 3i)

the student should recognize the form (a + b)(ab) -- which will produce the difference of two squares.  Therefore,

(2 + 3i)(2 − 3i) = 4 − 9i2
 
  = 4 − 9(−1)
 
  = 4 + 9
 
  = 13.

Again, the factor i2 changes the sign of the term.

Problem 4.   Multiply.

a)   (1 + icomplex numbers)(1 − icomplex numbers) =  1 − 2i2  =  1 + 2 = 3

  b)   (3 − icomplex numbers)2 = 9 − 6icomplex numbers + 2i2,   upon squaring the binomial,
 
  = 9 − 6icomplex numbers − 2
 
  = 7 − 6icomplex numbers
  c)   (2 + 3i)(4 − 5i) = 8 − 10i + 12i − 15i2
 
  = 8 + 2i + 15
 
  = 23 + 2i

Problem 5.   (x + 1 + 3i)(x + 1 − 3i)

a)   What form will that produce?   The difference of two squares.

b)   Multiply out.

  (x + 1 + 3i)(x + 1 − 3i) = (x + 1)2 − 9i2
 
  = x2 + 2x + 1 + 9
 
  = x2 + 2x + 10
  c) (x − 2 − icomplex numbers)(x − 2 + icomplex numbers) = (x − 2)2 − 2i2
 
  = x2 − 4x + 4 + 2
 
  = x2 − 4x + 6

The real and imaginary components

Here is the standard form of a complex number:

a + bi.

Both a and b are real.  For example,

3 + 2i.

a -- that is, 3 in the example -- is called the real component (or the real part).  b (2 in the example) is called the imaginary component (or the imaginary part).  Again, the components are real.

Problem 6.   Name the real component a and the imaginary component b.

  a)   3 − 5i  a = 3,  b = −5.   b)   1 + icomplex numbers   a = 1,  b = complex numbers.
 
  c)   i   a = 0,  b = 1.   d)   −6   a = −6,  b = 0.

Complex conjugates

The complex conjugate of  a + bi  is  abi.  The main point about a conjugate pair is that when they are multiplied --

(a + bi)(abi)

-- the product is a positive real number.  For, that form is the difference of two squares:

(a + bi)(abi)  =  a2b2i2  =  a2 + b2

The product of a complex conjugate pair
is equal to the sum of the squares of the components.

Problem 7.   Calculate the positive real number that results from multiplying each number with its complex conjugate.

a)   2 + 3i.    (2 + 3i)(2 − 3i) = 22 + 32 = 4 + 9 = 13

b)  3 − icomplex numbers.    (3 − icomplex numbers)(3 + icomplex numbers) = = 32 + (complex numbers)2= 9 + 2 = 11

c)  u + iv.    (u + iv)(uiv) = u2 + v2

d)  1 + i.    (1 + i)(1 − i) = 12 + 12 = 2

e)  −i.    (−i)(i) = i2 = 1

end

Next Lesson:  Rectangular coördinates


Table of Contents | Home


Please make a donation to keep TheMathPage online.
Even $1 will help.


Copyright © 2014 Lawrence Spector

Questions or comments?

E-mail:  themathpage@nyc.rr.com