S k i l l




Example 1. In this number, 139,072,658 the 0 is in which place? Answer. Hundred thousands. For in each class of three digits, there are Ones, Tens, and Hundreds. 0 is in the class of thousands and in the Hundreds place. The power of 10 at that position is Hundred thousands. Example 2. In this number, 386,214,035 how many Ten millions are there? That is, which digit is in the ten millions place? Answer. 8. For on counting from the right, the millions are the third group of three digits, 386. The Tens place is the middle one (Ones, Tens, Hundreds). There are 8 Ten millions. Place value versus absolute value of a digit In addition to speaking of a digit being "in" a place, we also speak of the place value of the digit itself. In this number, 6,666 each digit has the same absolute or invariable value 6, but a different place value. 6 on the extreme left has the place value 6000; the next 6 has the value 600; the next, 60; and the last, 6. Expanded form The numeral for every whole number stands for a sum. 364 = 3 Hundreds + 6 Tens + 4 Ones. (Even a single digit stands for a sum: 5 = 1 + 1 + 1 + 1 + 1.) What is written above is called the expanded form of 364. 



Example 3. Write 6,325 in expanded form. Answer. Write 6,325 = 6 Thousands + 3 Hundreds + 2 Tens + 5 Ones. In practice, however, it is often more useful to expand the number in this way: 6,325 = 6,000 + 300 + 20 + 5. Example 4. Write the expanded form of 10,000. Answer. 10,000 = 1 Tenthousand + 0 Thousands + 0 Hundreds + 0 Tens + 0 Ones. Example 5. No matter what the unit:
And so on. For there is no "42" apart from 42 units, even though we do not say the word units. Units of adjacent place value The following question is to prepare for the standard written methods of addition and subtraction. The answer follows from the fact that each digit 6,325 has a place value ten times the digit to its right. For, each power of 10 is ten times the one to its right: 1000 100 10 1 1000 is made up of ten 100's. 100 is made up of ten 10's. 10 is made up of ten 1's. And so on. 



Ten 1's can be composed into one 10. Ten 10's can be composed into one 100. Ten 100's can be composed into one 1000. And so on. Conversely: 1000 100 10 1 One 1000 can be decomposed into ten 100's. One 100 can be decomposed into ten 10's. One 10 can be decomposed into ten 1's. 1000 100 10 1 We will see this when we come to regrouping in addition and subtraction. Rounding off 

 
Example 6. Round off 6,528 to the nearest ten. Answer. 6,5286,530 (The wavy equal signmeans "is approximately equal to.") 2 is in the tens place. To round off to the nearest ten, look at the digit to the right: 8 (greater than 5). Therefore, add 1 to the tens place. Replace 8 with 0. Example 7. Round off 6,528 to the nearest hundred. Answer. 6,5286,500 5 is in the hundreds place. To round off to the nearest hundred, look at the digit to the right: 2 (less than 5). Therefore, leave the hundreds place unchanged. Replace 28 with 00. Example 8. Round off 6,528 to the nearest thousand. Answer. 6,5287,000 6 is in the thousands place. To round off to the nearest thousand, look at the digit to the right: 5. Therefore, add 1 to the thousands place. Replace 528 with 000. Example 9. Round off 79,521 to the nearest thousand. Answer. 79,52180,000 9 is in the thousands place. To round off to the nearest thousand, look at the digit to the right: 5. Therefore, add 1 to 79  it becomes 80. Replace 521 with 000. To round off decimals, see Lesson 11. At this point, please "turn" the page and do some Problems. or Continue on to the next Section. Introduction  Home  Table of Contents Copyright © 2021 Lawrence Spector Questions or comments? Email: teacher@themathpage.com 